Title: Hole mobility and trapping in PVK films doped with CdSe/CdS and CdSe quantum dots
Authors: Ambrozevich, Sergey ×
Van der Auweraer, Mark
Dirin, Dmitry
Parshin, Mikhail A
Vasil'ev, Roman
Vitukhnovsky, Alexey #
Issue Date: Nov-2008
Publisher: Consultants Bureau
Series Title: Journal of Russian Laser Research vol:29 issue:6 pages:526-537
Abstract: Experimental study of the hole mobility in polyvinylcarbazole (PVK) films doped with two kinds of nanocrystals, on bare core CdSe and core-shell CdSe/CdS quantum dots, with concentrations ranging from 3 center dot 10(10) to 3 center dot 10(15) cm(-3), is presented. The quantum dots investigated were made using colloidal chemistry. The hole mobility was measured using the time-of-flight technique as a function of the applied electrical field in the range 10(5)-10(6) V/cm and for temperatures from 20A degrees C to 50A degrees C. The transient curves, being featureless on a linear plot, show on a double logarithmic scale a sharp inflection point indicating a dispersive carrier drift process. The recovered values of the mobility are in the range 3 center dot 10(-8)-10(-6) cm(2)center dot V-1 center dot s(-1) and their field and temperature dependences can be analyzed formally within the framework of the Gaussian disorder model proposed by Bassler. The energetic disorder is, within the experimental accuracy, independent of the concentration and type of quantum dots for the CdSe quantum dots at all concentrations and for the CdS/CdSe quantum dots up to 10(14) cm(-3). The spatial disorder factors are very large (from 5.3 to 8.7) and do not depend in a systematic way upon the type and concentration of quantum dots (QDs). The experiments show that the apparent mobility does not change considerably with concentration, but it was found that the samples with CdSe/CdS quantum dots at concentrations from 10(15) to 3 center dot 10(15) cm(-3) show a decreased photocurrent response. The dependence of the time-integrated transients (corresponding to the full charge value) upon the quantum-dot concentration has been determined. Differences in total photogenerated charge for pure and doped polymer films imply that the quantum dots of that type are the hole traps with capture times much more smaller than the transit time and with emission times a few orders longer than the transit time. CdSe quantum dots without a shell do not seem to exhibit the same properties as core shells and do not produce considerable changes in the charge transfer, even at a density of 10(15) cm(-3).
ISSN: 1071-2836
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular Imaging and Photonics
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science