Title: Reconstitution of the human 5-HT(1D) receptor-G-protein coupling: evidence for constitutive activity and multiple receptor conformations
Authors: Brys, R ×
Josson, K
Castelli, M P
Jurzak, M
Lijnen, Paul
Gommeren, W
Leysen, J E #
Issue Date: Jun-2000
Series Title: Molecular Pharmacology vol:57 issue:6 pages:1132-41
Abstract: The 5-hydroxytryptamine (5-HT) 1D/1B receptors have gained particular interest as potential targets for treatment of migraine and depression. G-protein coupling and other intrinsic properties of the human 5-HT(1D) receptor were studied using a baculovirus-based expression system in Sf9 cells. Coexpression of the human 5-HT(1D) receptor with Galpha(i1), alpha(i2), alpha(i3), or Galpha(o)-proteins and Gbeta(1)gamma(2)-subunits reconstituted a Gpp(NH)p-sensitive, high affinity binding of [(3)H]5-HT to this receptor, whereas the Galpha(q)beta(1)gamma(2) heterotrimer was ineffective in this respect. Competition of [(3)H]5-HT binding by various compounds confirmed that coexpression of the human 5-HT(1D) receptor with Galpha(i/o)beta(1)gamma(2) reconstitutes the receptor in a high affinity agonist binding state, having the same pharmacological profile as the receptor expressed in mammalian cells. Binding of the antagonist ocaperidone to the human 5-HT(1D) receptor in coupled or noncoupled state was analyzed. This compound competed with [(3)H]5-HT binding more potently on the human 5-HT(1D) receptor in the noncoupled state, showing its inverse agonistic character. Ocaperidone acted as a competitive inhibitor of [(3)H]5-HT binding when tested with the coupled receptor form but not so when tested with the noncoupled receptor preparation. Finally, [(35)S]GTPgammaS binding experiments using the inverse agonist ocaperidone revealed a high level of constitutive activity of the human 5-HT(1D) receptor. Taken together, the reconstitution of the human 5-HT(1D) receptor-G-protein coupling using baculovirus-infected Sf9 cells made possible the assessment of coupling specificity and the detection of different binding states of the receptor induced by G-protein coupling or ligand binding.
ISSN: 0026-895X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Hypertension and Cardiovascular Epidemiology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science