Title: GS-9191 is a novel topical prodrug of the nucleotide analog 9-(2-phosphonylmethoxyethyl)guanine with antiproliferative activity and possible utility in the treatment of human papillomavirus lesions
Authors: Wolfgang, Grushenka H I ×
Shibata, Riri
Wang, Jianying
Ray, Adrian S
Wu, Sylvia
Doerrfler, Edward
Reiser, Hans
Lee, William A
Birkus, Gabriel
Christensen, Neil D
Andrei, Graciela
Snoeck, Robert #
Issue Date: Jul-2009
Series Title: Antimicrobial Agents and Chemotherapy vol:53 issue:7 pages:2777-84
Abstract: GS-9191 is a novel double prodrug of the nucleotide analog 9-(2-phosphonylmethoxyethyl)guanine (PMEG) designed as a topical agent to permeate skin and be metabolized to the active nucleoside triphosphate analog in the epithelial layer. The prodrug was shown to be metabolized intracellularly to 9-(2-phosphonylmethoxyethyl)-N(6)-cyclopropyl-2,6,diaminopurine (cPrPMEDAP) and subsequently deaminated to PMEG. The active form, PMEG diphosphate, was shown to be a potent inhibitor of DNA polymerase alpha and beta while showing weaker activity against mitochondrial DNA polymerase gamma (50% enzyme inhibition observed at 2.5, 1.6, and 59.4 microM, respectively). GS-9191 was markedly more potent than PMEG or cPrPMEDAP in a series of human papillomavirus (HPV)-positive cell lines, with effective concentrations to inhibit 50% cell growth (EC(50)) as low as 0.03, 207, and 284 nM, respectively. In contrast, GS-9191 was generally less potent in non-HPV-infected cells and primary cells (EC(50)s between 1 and 15 nM). DNA synthesis was inhibited by GS-9191 within 24 h of treatment; cells were observed to be arrested in S phase by 48 h and to subsequently undergo apoptosis (between 3 and 7 days). In an animal model (cottontail rabbit papillomavirus), topical GS-9191 was shown to decrease the size of papillomas in a dose-related manner. At the highest dose (0.1%), cures were evident at the end of 5 weeks, and lesions did not recur in a 30-day follow-up period. These data suggest that GS-9191 may have utility in the treatment of HPV-induced lesions.
ISSN: 0066-4804
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory of Virology and Chemotherapy (Rega Institute)
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
Wolfgang_AAC_2009.pdf Published 795KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science