Title: Evaluation of a radiation protection cabin for invasive electrophysiological procedures
Authors: Dragusin, Octavian ×
Weerasooriya, Rukshen
Jaïs, Pierre
Hocini, Mélèze
Ector, Joris
Takahashi, Yoshihide
Haïssaguerre, Michel
Bosmans, Hilde
Heidbuchel, Hein #
Issue Date: Dec-2006
Series Title: European Heart Journal vol:28 issue:2 pages:183-189
Abstract: AIMS: Complex invasive electrophysiological procedures may result in high cumulative operator radiation exposure. Classical protection with lead aprons results in discomfort while radioprotection is still incomplete. This study evaluated the usefulness of a radiation protection cabin (RPC) that completely surrounds the operator. METHODS AND RESULTS: The evaluation was performed independently in two electrophysiology laboratories (E1-Leuven, Belgium; E2-Bordeaux, France), comparing operator radiation exposure using the RPC vs. a 0.5 mm lead-equivalent apron (total of 135 procedures). E1 used thermoluminiscent dosimeters (TLDs) placed at 16 positions in and out of the RPC and nine positions in and out of the apron. E2 used more sensitive electronic personal dosimeters (EPD), placed at waist and neck. The sensitivity thresholds of the TLDs and EPDs were 10-20 microSv and 1-1.5 microSv, respectively. All procedures could be performed unimpeded with the RPC. Median TLD dose values outside protected areas were in the range of 57-452 microSv, whereas doses under the apron or inside the RPC were all at the background radiation level, irrespective of procedure and fluoroscopy duration and of radiation energy delivered. In addition, the RPC was protecting the entire body (except the hands), whereas lead apron protection is incomplete. Also with the more sensitive EPDs, the radiation dose within the RPC was at the sensitivity threshold/background level (1.3+/-0.6 microSv). Again, radiation to the head was significantly lower within the RPC (1.9+/-1.2 microSv) than with the apron (102+/-23 microSv, P<0.001). CONCLUSION: The use of the RPC allows performing catheter ablation procedures without compromising catheter manipulation, and with negligible radiation exposure for the operator.
ISSN: 0195-668X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Cardiovascular Imaging and Dynamics
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science