Title: Deconstructing voltage sensor function and pharmacology in sodium channels
Authors: Bosmans, Frank ×
Martin-Eauclaire, Marie-France
Swartz, Kenton J #
Issue Date: Nov-2008
Publisher: Nature publishing group
Series Title: Nature vol:456 issue:7219 pages:202-U28
Abstract: Voltage- activated sodium (Na-v) channels are crucial for the generation and propagation of nerve impulses, and as such are widely targeted by toxins and drugs. The four voltage sensors in Na-v channels have distinct amino acid sequences, raising fundamental questions about their relative contributions to the function and pharmacology of the channel. Here we use four- fold symmetric voltage- activated potassium ( K-v) channels as reporters to examine the contributions of individual S3b-S4 paddle motifs within Na-v channel voltage sensors to the kinetics of voltage sensor activation and to forming toxin receptors. Our results uncover binding sites for toxins from tarantula and scorpion venom on each of the four paddle motifs in Nav channels, and reveal how paddle- specific interactions can be used to reshape Na-v channel activity. One paddle motif is unique in that it slows voltage sensor activation, and toxins selectively targeting this motif impede Na-v channel inactivation. This reporter approach and the principles that emerge will be useful in developing new drugs for treating pain and Na-v channelopathies.
ISSN: 0028-0836
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Toxicology and Pharmacology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science