This item still needs to be validated !
Title: 1,25-Dihydroxyvitamin D and vitamin D-binding protein are both decreased in streptozotocin-diabetic rats
Authors: Nyomba, B L ×
Bouillon, Roger
Lissens, W
Van Baelen, Hugo
De Moor, Pieter #
Issue Date: Jun-1985
Series Title: Endocrinology vol:116 issue:6 pages:2483-8
Abstract: Calcium and vitamin D metabolism were studied in streptozotocin-treated rats up to 10 days after the induction of diabetes. Proteinuria, hypercalciuria, and hyperphosphaturia appeared as early as 3 days after diabetes induction and were reversed by insulin. The serum proteins and fasting calcium concentrations were decreased in untreated diabetic rats. The concentration of serum vitamin D binding protein (DBP) was higher in male than in female control rats (mean +/- SD; 555 +/- 73 vs. 348 +/- 28 mg/liter, P less than 0.001). When sequentially measured in male untreated diabetic rats, DBP concentration steadily decreased. Compared with control values, DBP was reduced 19%, 28%, and 32% on days 3, 6, and 10, respectively, after induction of diabetes in male rats. In female animals, DBP was reduced 22% on day 10 of diabetes. DBP concentration was corrected by insulin treatment of diabetic rats and remained normal in streptozotocin-treated animals that did not develop diabetes. The serum concentration of 25-hydroxyvitamin D3 was similar in both sexes and was not affected by diabetes. Like DBP, the concentration of total 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] was higher in male than in female control rats (120 +/- 24 vs. 96 +/- 17 ng/liter, P less than 0.001), but 10 days after induction of diabetes this concentration decreased by 37% and 29% in male and female rats, respectively. The free 1,25-(OH)2D3 concentration, estimated from the molar 1,25-(OH)2D3/DBP ratio, was similar in both sexes and was not decreased by diabetes. We conclude that experimental diabetes in the rat induces a decrease in DBP concentration and a concomitant decrease in total but not in free 1,25-(OH)2D3 concentrations. This may indicate that diabetes decreases circulating 1,25-(OH)2D3 concentrations through alterations in DBP levels.
ISSN: 0013-7227
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Clinical and Experimental Endocrinology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science