This item still needs to be validated !
Title: The effects of 1alpha,25-dihydroxyvitamin D3 on the expression of DNA replication genes
Authors: Eelen, Guy *
Verlinden, Lieve *
Van Camp, Mark
Van Hummelen, Paul
Marchal, Kathleen
De Moor, Bart
Mathieu, Chantal
Carmeliet, Geert
Bouillon, Roger ×
Verstuyf, Annemieke #
Issue Date: Jan-2004
Publisher: Blackwell Science, Inc.
Series Title: Journal of Bone and Mineral Research vol:19 issue:1 pages:133-146
Abstract: To identify key genes in the antiproliferative action of 1,25(OH)2D3, MC3T3-E1 mouse osteoblasts were subjected to cDNA microarray analyses. Eleven E2F-driven DNA replication genes were downregulated by 1,25(OH)2D3. These results were confirmed by quantitative RT-PCR in different cell types, showing the general nature of this action of 1,25(OH)2D3. INTRODUCTION: 1Alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3] has a potent antiproliferative action characterized by a blocked transition from the G1- to the S-phase of the cell cycle. This study aims to identify genes whose expression is markedly altered after 1,25(OH)2D3 treatment in parallel with or preceding the observed G1-arrest. MATERIALS AND METHODS: The cDNA microarray technique was used, and the expression of approximately 4600 genes in MC3T3-E1 mouse osteoblasts was studied 6 and 12 h after treatment with 10(-8) M 1,25(OH)2D3. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analyses were performed on MC3T3-E1 cells and on wildtype and vitamin D receptor (VDR) knockout primary murine epidermal keratinocytes (VDRwt MEKs, VDR-/- MEKs) and murine mammary tumor cells (GR) to confirm the microarray data. RESULTS AND CONCLUSIONS: After 12 h of treatment, in parallel with the 1,25(OH)2D3-induced G1 arrest, a particular set of DNA replication genes including a cell division cycle 6 homolog, a DNA polymerase alpha subunit, proliferating cell nuclear antigen, two DNA polymerase delta subunits, and flap-structure specific endonuclease 1, was downregulated at least 2-fold. These genes are known targets of the E2F family of transcription factors, which are probably the central mediators of this action of 1,25(OH)2D3. Indeed, as shown by transfection assays with an E2F reporter construct, 12- and 24-h treatment of MC3T3-E1 cells with 1,25(OH)2D3 reduced E2F activity by 49% and 73%, respectively. Quantitative RT-PCR analyses confirmed the downregulation of these DNA replication genes by 1,25(OH)2D3 in MC3T3-E1, GR, and VDRwt MEKs cells, but not in VDR-/- MEKs cells, showing that this 1,25(OH)2D3-driven antiproliferative action is of a general nature and depends on a functional VDR.
ISSN: 0884-0431
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Clinical and Experimental Endocrinology
ESAT - STADIUS, Stadius Centre for Dynamical Systems, Signal Processing and Data Analytics
* (joint) first author
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science