Title: A synthetic superoxide dismutase/catalase mimetic (EUK-134) inhibits membrane-damage-induced activation of mitogen-activated protein kinase pathways and reduces p53 accumulation in ultraviolet B-exposed primary human keratinocytes
Authors: Decraene, David ×
Smaers, Katrien
Gan, David
Mammone, Tom
Matsui, Mary
Maes, Daniel
Declercq, Lieve
Garmyn, Maria #
Issue Date: Feb-2004
Series Title: Journal of Investigative Dermatology vol:122 issue:2 pages:484-91
Abstract: Salen-manganese complexes exhibit powerful superoxide dismutase and catalase activity, with pharmacologic efficacy in several oxidative-stress-associated disease models. Ultraviolet (UV) B not only induces direct DNA damage, but also generates oxidative stress. EUK-134, a salen-manganese complex, might therefore confer a direct protection against UVB-induced oxidative stress and consequently alleviate UVB-damage-induced signal transduction. We investigated the effect of EUK-134 on the UVB-induced accumulation and stabilization of the p53 protein. p53 plays a central role in the UVB response, both as sensor of UVB damage and as a mediator of a protective response. Cells treated with EUK-134 before UVB irradiation showed a significantly lower accumulation of the p53 protein in a concentration-dependent fashion. Furthermore, EUK-134 severely reduced N-terminal phosphorylation of p53. The extracellular signal-regulated kinase ERK and the stress-activated kinases JNK and p38 have been implicated in the UVB-induced N-terminal phosphorylation and accumulation of p53. Pre-treatment with EUK-134 inhibited the UVB-induced activation of these mitogen-activated protein kinase (MAPK) pathways. We hypothesize that EUK-134, by direct protection of the membrane from UVB-induced oxidative damage, reduces oxidative stress induced MAPK signaling and consequently lowers the level of p53 induction. The protection conferred by EUK-134 resulted in a significant increase in cell survival following UVB irradiation.
ISSN: 0022-202X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory of Dermatology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science