Title: Cellular expression and proteolytic processing of presenilin proteins is developmentally regulated during neuronal differentiation
Authors: Capell, A ×
Saffrich, R
Olivo, JC
Meyn, L
Walter, J
Grunberg, J
Mathews, P
Nixon, R
Dotti, Carlos
Haass, C #
Issue Date: Dec-1997
Publisher: Lippincott-raven publ
Series Title: Journal of Neurochemistry vol:69 issue:6 pages:2432-2440
Abstract: We have determined the expression of the Alzheimer's disease-associated proteins presenilin-1 and presenilin-2 in primary cultures of rat hippocampal neurons. Neurons highly express presenilin-1 and presenilin-2, whereas both proteins were not detected in astrocytes. Further, we have analyzed the subcellular localization and expression in rat hippocampal neurons during development. Although presenilin proteins were localized predominantly to the endoplasmic reticulum in nonneuronal cells transfected with presenilin cDNAs, in neurons, presenilin proteins were also found in compartments not staining with antibodies to grp78(BiP). Presenilin-1 and presenilin-2 were predominantly detected in vesicular structures within the somatodendritic compartment with much less expression in axons. Polarized distribution of presenilin-1 and presenilin-2 differs slightly, with more presenilin-2 expressed in axons compared with presenilin-1. Presenilin expression was found to be developmentally regulated. Presenilin expression strongly increased during neuronal differentiation until full morphological polarization and then declined. No full-length presenilin-1 or presenilin-2 could be detected within cell lysates. At early developmental stages the expected similar to 34-kDa N-terminal proteolytic fragment of presenilin-1 and the similar to 38-kDa fragment of presenilin-2 were detected. Later during differentiation we predominantly detected a similar to 38-kDa fragment for presenilin-1 and a similar to 42-kDa fragment for presenilin-2. By epitope mapping, we show that these slower migrating peptides represent N-terminal proteolytic fragments, cleaved C-terminal to the conventional site of processing. it is noteworthy that both presenilin-1 and presenilin-2 undergo alternative proteolytic cleavage at the same stage of neuronal differentiation. Regulation of presenilin expression and proteolytic processing might have implications for the pathological as well as the biological function of presenilins during aging in the human brain.
ISSN: 0022-3042
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Non-KU Leuven Association publications
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science