Title: Exposing the causal structure of processes by learning CP-logic programs
Authors: Blockeel, Hendrik #
Issue Date: Dec-2008
Publisher: Springer
Host Document: PRICAI 2008: Trends in Artificial Intelligence pages:2-2
Conference: Pacific Rim International Conference on Artificial Intelligence edition:10 location:Hanoi, Vietnam date:15-19 December 2008
Abstract: Since the late nineties there has been an increased interested in probabilistic logic learning, an area within AI that combines machine learning with logic-based knowledge representation and uncertainty reasoning. Several different formalisms for combining first-order
logic with probability reasoning have been proposed, and it has been studied how models in these formalisms can be automatically learned from data.

This talk starts with a brief introduction to probabilistic logic learning, after which we will focus on a relatively new formalism known as CP-logic. CP-logic stands for "causal probabilistic logic". It is a knowledge representation formalism that allows us to write down rules that indicate that a certain combination of conditions may
cause certain effects with a particular probability (e.g., tossing a coin may cause a result of heads or tails, each with 50% probability). Besides the fact that this formalism is interesting for knowledge representation in itself, it also offers interesting opportunities from the machine learning point of view. Indeed, given the semantics of these CP-logic programs, learning them from data amounts to
extracting probabilistic causal influences from data. We will discuss recent research on learning CP-logic programs, including: algorithms for learning them; how they relate to graphical models; and applications of learning CP-logic programs.
ISBN: 978-3-540-89196-3
Publication status: published
KU Leuven publication type: IMa
Appears in Collections:Informatics Section
# (joint) last author

Files in This Item:

There are no files associated with this item.


All items in Lirias are protected by copyright, with all rights reserved.