ITEM METADATA RECORD
Title: Qualitative and quantitative applications of LiDAR imagery in fluvial geomorphology
Authors: Notebaert, Bastiaan ×
Verstraeten, Gert
Govers, Gerard
Poesen, Jean #
Issue Date: Feb-2009
Publisher: Wiley
Series Title: Earth Surface Processes and Landforms vol:34 issue:2 pages:217-231
Abstract: The potential for geomorphological mapping and quantitative calculations of light detection and ranging (LiDAR) data within fluvial geomorphology was studied for two river catchments within Belgium (Dijle and Amblève), which differ in physical settings and floodplain morphology. Two commercial, of-the-shelf LiDAR datasets with different specifications (horizontal resolution and vertical accuracy) were available for parts of the floodplains of both catchments. Real-time kinematic (RTK) Global Positioning System (GPS) data were used as ground truth for error calculations.
Qualitative analysis of LiDAR data allowed the identification of former channel patterns, levees, colluvial hillslope and fan deposits. These results were confirmed by field data, topographic surveys and historical maps. The pixel resolution proved to be an important factor in the identification of small landforms: only features with a width equal to or larger than LiDAR resolution can be detected. This poses limits on the usability of regionally available LiDAR data, which often have a horizontal resolution of several metres.
The LiDAR data were also used in a quantitative analysis of channel dynamics. In the study area, the width of the Dijle River channel increased 3 m on average between 1969 and 2003. A sediment budget of channel processes for the period 1969-2003 indicated a total river bank erosion of 16·1 103 m3 and a total within channel deposition of 7·1 103 m3, resulting in a net river erosion of 9·0 103 m3 or c. 0·4 Mg year-1 per metre river length. Sequential LiDAR data can in theory be used to calculate vertical sedimentation rates, as long as there is control on the error of the reference levels used. Copyright © 2008 John Wiley and Sons, Ltd.
ISSN: 0197-9337
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Division of Geography & Tourism
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
espl_lidar.pdfArticle Published 860KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science