Title: Study of simple hydrodynamic solutions with the two-relaxation-times lattice Boltzmann scheme
Authors: Ginzburg, Irina ×
Verhaeghe, Frederik
d'Humieres, Dominique #
Issue Date: Mar-2008
Publisher: Global science press
Series Title: Communications in computational physics vol:3 issue:3 pages:519-581
Abstract: For simple hydrodynamic solutions, where the pressure and the velocity are polynomial functions of the coordinates, exact microscopic solutions are constructed for the two-relaxation-time (TRT) Lattice Boltzmann model with variable forcing and supported by exact boundary schemes. We show how simple numerical and analytical solutions can be interrelated for Dirichlet velocity, pressure and mixed (pressure/tangential velocity) multi-reflection (MR) type schemes. Special care is taken to adapt them for corners, to examine the uniqueness of the obtained steady solutions and staggered invariants, to validate their exact parametrization by the non-dimensional hydrodynamic and a "kinetic" (collision) number. We also present an inlet/outlet "constant mass flux" condition. We show, both analytically and numerically, that the kinetic boundary schemes may result in the appearance of Knudsen layers which are beyond the methodology of the Chapman-Enskog analysis. Time dependent Dirichlet boundary conditions are investigated for pulsatile flow driven by an oscillating pressure drop or forcing. Analytical approximations are constructed in order to extend the pulsatile solution for compressible regimes.
ISSN: 1815-2406
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Chemical and Extractive Metallurgy Section (-)
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
pub04803.pdfMain article Published 821KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science