Title: The impact of land use and climate change on late Holocene and future suspended sediment yield of the Meuse catchment
Authors: Ward, Philip J ×
van Balen, Ronald T
Verstraeten, Gert
Renssen, Hans
Vandenberghe, Jef #
Issue Date: Feb-2009
Publisher: Elsevier science bv
Series Title: Geomorphology vol:103 issue:3 pages:389-400
Abstract: In this study we investigate the relative importance of changes in land use and climate on suspended sediment yield (SY) on millennial timescales in the Meuse basin. We use a spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM) to simulate SY in three time-periods: 4000-3000 BP(minimal anthropogenic influence); 1000-2000 AD (includes land use and climate change); and the 21st Century. Changes in climate are based on climate model output (ECBilt-CLIO-VECODE). For the 21st Century the model is forced according to two emission scenarios of the Intergovernmental Panel on Climate Change (IPCC), namely the SIZES scenarios A2 and B1. These scenarios lie towards the higher and lower end of the full IPCC scenario range respectively. For 4000-3000 BP the basin is assumed to be almost fully forested; for 1000-2000 AD land use is reconstructed using CORINE data, historical sources, and land use modelling; and for the 21st Century land use is based on the European land use change project EURURALIS. Whilst rainfall erosivity increases by only 3% between 4000-3000 BP and 1000-2000 AD, SY increases from ca. 92000 Mg a(-1) to ca. 306000 Mg a(-1). This model prediction is in agreement with the limited regional multi-proxy data available. Our simulations show that almost all of this increase is due to the conversion of forest to agricultural land. Over the period 1000-1900 AD, SY shows a significant increasing trend, with a peak of ca. 388 000 Mg a(-1) in the 19th Century (due to continuing deforestation). In the 20th Century, reforestation and rapid Urbanisation result in a decrease to ca. 281000 Mg a(-1). Sensitivity analyses show that although land use change acts as the primary control on long-term changes in SY, the sensitivity of SY to changes in climate increases as the percentage of deforested land increases. For the 21st Century the results are highly sensitive to the scenarios used. Due to relatively large increases in rainfall erosivity, SY increases by 12% compared to the 20th Century according to scenario A2, or by 8% according to B1. However, the associated land use change scenarios cause decreases in SY by 26% (A2) and 46% (B1). The net effect is thus a decrease of SY. This study highlights the potentially significant efficacy of land use planning as a tool to mitigate the negative effects of soil erosion and sediment delivery to rivers. (C) 2008 Elsevier BY. All rights reserved.
ISSN: 0169-555X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Division of Geography & Tourism
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
Ward_etal_2009_GEOMORPHOLOGY.pdfmain article Published 1957KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science