ITEM METADATA RECORD
Title: Glucuronoarabinoxylan structure in the walls of Aechmea leaf chlorenchyma cells is related to wall strength
Authors: Ceusters, Johan ×
Londers, Elsje
Brijs, Kristof
Delcour, Jan
De Proft, Maurice #
Issue Date: Sep-2008
Publisher: Pergamon-elsevier science ltd
Series Title: Phytochemistry vol:69 issue:12 pages:2307-2311
Abstract: In CAM-plants rising levels of malic acid in the early morning cause elevated turgor pressures in leaf chlorenchyma cells. Under specific conditions this process is lethal for sensitive plants resulting in chlorenchyma cell burst while other species can cope with these high pressures and do not show cell burst under comparable conditions. The non-cellulosic polysaccharide composition of chlorenchyma cell walls was investigated and compared in three cultivars of Aechmea with high sensitivity for chlorenchyma cell burst and three cultivars with low sensitivity. Chlorenchyma layers were cut from the leaf and the non-cellulosic carbohydrate fraction of the cell wall fraction was analyzed by gas-liquid chromatography. Glucuronoarabinoxylans (GAXs) were the major non-cellulosic polysaccharides in Aechmea. The fine structure of these GAXs was strongly related to chlorenchyma wall strength. Chlorenchyma cell walls from cultivars with low sensitivity to cell burst were characterized by an A/X ratio of ca. 0.13 while those from cultivars with high sensitivity showed an A/X ratio of ca. 0.23. Xylose chains from cultivars with high cell burst sensitivity were ca. 40% more substituted with arabinose compared to cultivars with low sensitivity for cell burst. The results indicate a relationship in vivo between glucuronoarabinoxylan fine structure and chlorenchyma cell wall strength in Aechmea. The evidence obtained supports the hypothesis that GAXs with low degrees of substitution cross-link cellulose microfibrils, while GAXs with high degrees of substitution do not. A lower degree of arabinose substitution on the xylose backbone implies stronger cell walls and the possibility of withstanding higher internal turgor pressures without cell bursting. (C) 2008 Elsevier Ltd. All rights reserved.
URI: 
ISSN: 0031-9422
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Centre for Food and Microbial Technology
Division of Crop Biotechnics
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science