Title: Combined inactivation of the Candida albicans GPR1 and TPS2 genes results in avirulence in a mouse model for systemic infection
Authors: Maidan, Mykola M
De Rop, Larissa
Relloso, Miguel
Diez-Orejas, Rosalia
Thevelein, Johan
Van Dijck, Patrick # ×
Issue Date: Apr-2008
Publisher: Amer soc microbiology
Series Title: Infection and immunity vol:76 issue:4 pages:1686-1694
Abstract: Inhibition of the biosynthesis of trehalose, a well-known stress protectant in pathogens, is an interesting approach for antifungal or antibacterial therapy. Deletion of TPS2, encoding trehalose-6-phosphate (T6P) phosphatase, results in strongly reduced virulence of Candida albicans due to accumulation of TO instead of trehalose in response to stress. To further aggravate the deregulation in the pathogen, we have additionally deleted the GPR1 gene, encoding the nutrient receptor that activates the cyclic AMP-protein kinase A signaling pathway, which negatively regulates trehalose accumulation in yeasts. A gpr1 mutant is strongly affected in morphogenesis on solid media as well as in vivo in a mouse model but has only a slightly decreased virulence. The gpr1 tps2 double mutant, on the other hand, is completely avirulent in a mouse model for systemic infection. This strain accumulates very high UP levels under stress conditions and has a growth defect at higher temperatures. We also show that a tps2 mutant is more sensitive to being killed by macrophages than the wild type or the gpr1 mutant. A double mutant has susceptibility similar to that of the single tps2 mutant. For morphogenesis on solid media, on the other hand, the gpr1 tps2 mutant shows a phenotype similar to that of the single gpr1 mutant. Taken together these results show that there is synergism between Gpr1 and Tps2 and that their combined inactivation results in complete avirulence. Combination therapy targeting both proteins may prove highly effective against pathogenic fungi with increased resistance to the currently used antifungal drugs.
ISSN: 0019-9567
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular Microbiology and Biotechnology Section - miscellaneous (-)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science