ITEM METADATA RECORD
Title: Degradation of very long chain dicarboxylic polyunsaturated fatty acids in mouse hopatocytes, a peroxisomal process
Authors: Nguyen Duy, Su
Baes, Myriam
Van Veldhoven, Paul P # ×
Issue Date: Aug-2008
Publisher: Elsevier science bv
Series Title: Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids vol:1781 issue:8 pages:400-5
Abstract: Polyunsaturated fatty acids can be omega-oxidized to dicarboxylic polyunsaturated fatty acids (DC-PUFA), bioactive compounds which cause vasodilatation and activation of PPARalpha and gamma. DC-PUFA can be shortened by beta-oxidation, and to determine whether mitochondria and/or peroxisomes are responsible for this degradation 20-carboxy-[1-(14)C]-eicosatetraenoic acid (20-COOH-AA) was synthesized and given to hepatocytes from mouse models with peroxisomal dysfunctions. In contrast to wild type cells, hepatocytes from mice with liver-selective elimination of peroxisomes, due to Pex5p deficiency, failed to produce (14)CO(2) and labeled acid-soluble oxidation products, indicating that peroxisomes are involved in the degradation of 20-COOH-AA. Subsequently, the oxidation of 20-COOH-AA was analyzed in hepatocytes lacking multifunctional protein 1 (MFP1) or MFP2, key enzymes of the peroxisomal beta-oxidation. Degradation of 20-COOH-AA was partially impaired in MFP1, but not in MFP2 knockout hepatocytes. Taken together, peroxisomes and not mitochondria are the site of beta-oxidation of DC-PUFA, and MFP1 is involved in this process.
URI: 
ISSN: 1388-1981
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Cell Metabolism
Laboratory of Lipid Biochemistry and Protein Interactions
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science