Title: Interrelations/cross talk between transcellular transport function and paracellular tight junctional properties in lung epithelial and endothelial barriers
Authors: Van Driessche, Willy ×
Kreindler, James L
Malik, Asrar B
Margulies, Susan
Lewis, Simon A
Kim, Kwang-Jin #
Issue Date: Sep-2007
Publisher: Amer physiological soc
Series Title: American journal of physiology-lung cellular and molecular physiology vol:293 issue:3 pages:L520-L524
Abstract: In this synopsis of a symposium at EB2007, we start with an overview of noise and impedance analyses that have been applied to various epithelial barriers. Noise analysis yields specific information about ion channels and their regulation in epithelial and endothelial barriers. Impedance analysis can yield information about apical and basolateral membrane conductances and paracellular conductance of both epithelial and endothelial barriers. Using a morphologically based model, impedance analysis has been used to assess changes in apical and basolateral membrane surface areas and dimensions of the lateral intercellular space. Impedance analysis of an in vitro airway epithelial barrier under normal, nucleotide-stimulated, and cigarette smoke-exposed conditions yielded information on how activation and inhibition of secretion occur in airway epithelial cells. Similarly, impedance analysis of primary rat alveolar epithelial cell monolayer model under control and EGTA exposure conditions indicate that EGTA causes decreases in resistances of tight junctional routes as well as apical and basolateral cell membranes without causing much change in cell capacitances. In a stretch-caused injury model of alveolar epithelium, transcellular ion transport function and paracellular permeability of solute transport appear to be differentially regulated. Finally, inhibition of caveolae-mediated transcytosis in lung endothelium led to disruption of paracellular routes, increasing the physical dimension and permeability of tight junctional region. These data together demonstrate the cross talk between transcellular and paracellular transport (function and routes) of lung epithelial and endothelial barriers. Mechanistic (e. g., signaling cascades) information on such cross talk remain to be determined.
ISSN: 1040-0605
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Department of Cellular and Molecular Medicine - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science