Title: Alternative pulse shapes in electrical hearing
Authors: Van Wieringen, Astrid ×
Macherey, Olivier
Carlyon, Robert P
Deeks, John M
Wouters, Jan #
Issue Date: Aug-2008
Publisher: Elsevier Science, B.V.
Series Title: Hearing research vol:242 issue:1-2 pages:154-163
Abstract: Cochlear implants (CIs) stimulate the auditory nerve with trains of symmetric biphasic (BI) pulses. We review studies showing that more efficient stimulation can be achieved by modifying these pulses by (1) increasing the inter-phase gap (IPG) between the two phases of each pulse, thereby delaying the recovery of charge, (2) increasing the duration and decreasing the amplitude of one phase - so-called "pseudomonophasic (PS)" waveforms, and (3) combining the pseudomonophasic stimulus with an IPG in a "delayed pseudomonophasic" waveform (PS_IPG). These efficiency gains, measured using changes in threshold and loudness, occur at a wide range of pulse rates, including those commonly used in current Cl systems. In monopolar mode, dynamic ranges are larger for PS and for long-IPG pulse shapes than for BI pulses, but this increase in DR is not accompanied by a higher number of discriminable loudness steps, and hence, in a better coding of loudness. Moreover, waveforms with relatively short and long interphase gaps do not yield different patterns of excitation despite the relatively large differences in threshold. Two important findings are that, contrary to data obtained in animal experiments, anodic currents are more effective than cathodic stimulation for human CI patients and that the thresholds decrease with increases in IPG over a much longer time course (more than 3 ms) than for animals. In this review it is discussed how these alternative pulse shapes may be beneficial in terms of reducing power consumption and channel interactions, which issues remain to be addressed, and how models contribute to guiding our research. (C) 2008 Elsevier B.V. All rights reserved.
ISSN: 0378-5955
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Research Group Experimental Oto-rhino-laryngology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science