This item still needs to be validated !
Title: Potent modulation of the voltage-gated sodium channel Nav1.7 by OD1, a toxin from the scorpion Odonthobuthus doriae
Authors: Maertens, Chantal ×
Cuypers, Eva
Amininasab, Mehriar
Jalali, Amir
Vatanpour, Hossein
Tytgat, Jan #
Issue Date: Jul-2006
Series Title: Molecular Pharmacology vol:70 issue:1 pages:405-14
Abstract: Voltage-gated sodium channels are essential for the propagation of action potentials in nociceptive neurons. Nav1.7 is found in peripheral sensory and sympathetic neurons and involved in short-term and inflammatory pain. Nav1.8 and Nav1.3 are major players in nociception and neuropathic pain, respectively. In our effort to identify isoform-specific and high-affinity ligands for these channels, we investigated the effects of OD1, a scorpion toxin isolated from the venom of the scorpion Odonthobuthus doriae. Nav1.3, Nav1.7, and Nav1.8 channels were coexpressed with beta1-subunits in Xenopus laevis oocytes. Na+ currents were recorded with the two-electrode voltage-clamp technique. OD1 modulates Nav1.7 at low nanomolar concentrations: 1) fast inactivation is dramatically impaired, with an EC50 value of 4.5 nM; 2) OD1 substantially increases the peak current at all voltages; and 3) OD1 induces a substantial persistent current. Nav1.8 was not affected by concentrations up to 2 microM, whereas Nav1.3 was sensitive only to concentrations higher than 100 nM. OD1 impairs the inactivation process of Nav1.3 with an EC50 value of 1127 nM. Finally, the effects of OD1 were compared with a classic alpha-toxin, AahII from Androctonus australis Hector and a classic alpha-like toxin, BmK M1 from Buthus martensii Karsch. At a concentration of 50 nM, both toxins affected Nav1.7. Nav1.3 was sensitive to AahII but not to BmK M1, whereas Nav1.8 was affected by neither toxin. In conclusion, the present study shows that the scorpion toxin OD1 is a potent modulator of Nav1.7, with a unique selectivity pattern.
ISSN: 0026-895X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Toxicology and Pharmacology
Physiology Section (-)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science