Title: Brominated furanones inhibit biofilm formation by Salmonella enterica serovar Typhimurium
Authors: Janssens, Joost ×
Steenackers, Hans
Robijns, Stijn
Gellens, E.
Levin, Jeremy
Zhao, Hui
Hermans, Kim
De Coster, David
Verhoeven, Tine
Marchal, Kathleen
Vanderleyden, Jozef
De Vos, Dirk
De Keersmaecker, Sigrid #
Issue Date: Nov-2008
Publisher: American Society for Microbiology (ASM)
Series Title: Applied and Environmental Microbiology vol:74 issue:21 pages:6639-6648
Abstract: Salmonella enterica serovar Typhimurium is a main cause of bacterial food-borne diseases. As Salmonella can form biofilms in which it is better protected against antimicrobial agents on a wide diversity of surfaces, it is of interest to explore ways to inhibit biofilm formation. Brominated furanones, originally extracted from the marine alga Delisea pulchra, are known to interfere with biofilm formation in several pathogens. In this study, we have synthesized a small focused library of brominated furanones and tested their activity against S. enterica serovar Typhimurium biofilm formation. We show that several furanones inhibit Salmonella biofilm formation at non-growth-inhibiting concentrations. The most interesting compounds are (Z)-4-bromo-5-(bromomethylene)-3-alkyl-2(5H)-furanones with chain lengths of two to six carbon atoms. A microarray study was performed to analyze the gene expression profiles of Salmonella in the presence of (Z)-4-bromo-5-(bromomethylene)-3-ethyl-2(5H)-furanone. The induced genes include genes that are involved in metabolism, stress response, and drug sensitivity. Most of the repressed genes are involved in metabolism, the type III secretion system, and flagellar biosynthesis. Follow-up experiments confirmed that this furanone interferes with the synthesis of flagella by Salmonella. No evidence was found that furanones act on the currently known quorum-sensing systems in Salmonella. Interestingly, pretreatment with furanones rendered Salmonella biofilms more susceptible to antibiotic treatment. Conclusively, this work demonstrates that particular brominated furanones have potential in the prevention of biofilm formation by Salmonella serovar Typhimurium.
ISSN: 0099-2240
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Centre of Microbial and Plant Genetics
Centre for Surface Chemistry and Catalysis
Laboratory of Translational Genetics (Vesalius Research Center) (+)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science