ITEM METADATA RECORD
Title: Enhancing sealing of fetal membrane defects using tissue engineered native amniotic scaffolds in the rabbit model
Authors: Ochsenbein-Kölble, Nicole ×
Jani, Jacques
Lewi, Liesbeth
Verbist, Godelieve
Vercruysse, Lisbeth
Portmann-Lanz, Bettina
Marquardt, Klaus
Zimmermann, Roland
Deprest, Jan #
Issue Date: Mar-2007
Publisher: Mosby, Inc.
Series Title: American Journal of Obstetrics and Gynecology vol:196 issue:3 pages:263-265
Abstract: OBJECTIVE: The purpose of this study was to compare the efficacy of native engineered amniotic scaffolds (AS) and polyesterurethane scaffolds (DegraPol) and document wound healing response when sealing iatrogenic fetal membrane defects in the rabbit model. STUDY DESIGN: Native AS were engineered from freshly harvested membranes of 23 days' gestational age (GA; term = 31-2 d). Acellularity of AS was assessed by histology, light and scanning electron microscopy. Fetal membrane defects were created by 14 gauge-needle puncture at GA 23 days and primarily closed with AS (n = 10) or DegraPol (n = 10) or left unclosed (positive controls; n = 10). Sixty-one sacs served as negative controls. At GA 30 days a second look hysterotomy was performed to assess presence of amniotic fluid (AF) and harvest plugging sites for microscopic evaluation. RESULTS: Engineered AS had a cell-free collagenous fiber network. AF was significantly higher only in the DegraPol group (78%; P < .05) compared to the AF in positive controls (17%). Integration of plugs in the fetal membrane defect was better with AS than DegraPol, with higher reepithelialization rates (AS: 52.5% +/- 6.5%; DegraPol: 11.6% +/- 2.6%; P < .001) and proliferation indices (AS: 0.47 +/- 0.03; DegraPol: 0.28 +/- 0.04; P = .001). In both treatment groups, cell proliferation in the myometrium was increased (P < .05). CONCLUSION: Native AS seal iatrogenic fetal membrane defects better than DegraPol. Within a week, there is abundant reepithelilization and minimal local inflammation. This yields the proof of principle that engineered native, amniotic membrane scaffolds enhance fetal membrane wound healing response.
URI: 
ISSN: 0002-9378
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Foetal Medicine Section (-)
Section Woman - Miscellaneous (-)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science