Title: Potent and selective activity of 3'-azido-2,6-diaminopurine-2',3'-dideoxyriboside, 3'-fluoro-2,6-diaminopurine-2',3'-dideoxyriboside, and 3'-fluoro-2',3'-dideoxyguanosine against human immunodeficiency virus
Authors: Balzarini, Jan ×
Baba, M
Pauwels, R
Herdewijn, Piet
Wood, S G
Robins, M J
De Clercq, Erik #
Issue Date: Mar-1988
Series Title: Molecular Pharmacology vol:33 issue:3 pages:243-249
Abstract: Several sugar-modified 2,6-diaminopurine and guanine 2',3'-dideoxyribosides were synthesized and evaluated in vitro for their ability to inhibit the cytopathic effect and replication of human immunodeficiency virus (HIV), the causative agent of acquired immunodeficiency syndrome (AIDS). 3'-Azido-2,6-diaminopurine-2',3'-dideoxyriboside (AzddDAPR), 3'-fluoro-2,6-diaminopurine-2',3'-dideoxyriboside (FddDAPR), and 3'-fluoro-2',3'-dideoxyguanosine emerged as potent and selective anti-HIV agents in MT4 cells (50% effective antiviral dose: 0.3-4.5 microM). Their selectivity indexes, based on the ratio of the 50% cytotoxic dose to the 50% antiviral effective dose, were 157, 80, and 96, respectively, as compared to 106 for 2,6-diaminopurine-2',3'-dideoxyriboside (ddDAPR) and 132 for 2',3'-dideoxyadenosine (ddAdo), two other potent anti-HIV agents. The 9-beta-D-arabinoside and 9-beta-D-2'-deoxyxyloside derivatives of 2,6-diaminopurine were devoid of any antiretrovirus activity. Both AzddDAPR and FddDAPR, like the parent compounds ddDAPR and ddAdo, proved susceptible to deamination by beef intestine adenosine deaminase (Km, 11, 148, 29, and 73 microM, respectively). 2'-Deoxycoformycin, a potent inhibitor of adenosine deaminase, decreased the antiretrovirus and cytostatic activity of ddDAPR and FddDAPR to a greater extent than that of AzddDAPR. This suggests that ddDAPR and FddDAPR are primarily active as their guanine analogues, whereas AzddDAPR may be potentially active as a 2,6-diaminopurine derivative as well.
ISSN: 0026-895X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory of Virology and Chemotherapy (Rega Institute)
Medicinal Chemistry (Rega Institute)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science