Title: alpha-L-ribo-configured locked nucleic acid (alpha-L-LNA): synthesis and properties
Authors: Sørensen, Mads D ×
Kvaernø, Lisbet
Bryld, Torsten
Håkansson, Anders E
Verbeure, Birgit
Gaubert, Gilles
Herdewijn, Piet
Wengel, Jesper #
Issue Date: Mar-2002
Series Title: Journal of the American Chemical Society vol:124 issue:10 pages:2164-2176
Abstract: The syntheses of monomeric nucleosides and 3'-O-phosphoramidite building blocks en route to alpha-L-ribo-configured locked nucleic acids (alpha-L-LNA), composed entirely of alpha-L-LNA monomers (alpha-L-ribo configuration) or of a mixture of alpha-L-LNA and DNA monomers (beta-D-ribo configuration), are described and the alpha-L-LNA oligomers are studied. Bicyclic 5-methylcytosin-1-yl and adenine-9-yl nucleoside derivatives have been prepared and the phosphoramidite approach has been used for the automated oligomerization leading to alpha-L-LNA oligomers. Binding studies revealed very efficient recognition of single-stranded DNA and RNA target oligonucleotide strands. Thus, stereoirregular alpha-L-LNA 11-mers containing a mixture of alpha-L-LNA monomers and DNA monomers ("mix-mer alpha-L-LNA") were shown to display DeltaT(m) values of +1 to +3 degrees C per modification toward DNA and +4 to +5 degrees C toward RNA when compared with the corresponding unmodified DNA x DNA and DNA x RNA reference duplexes. The corresponding DeltaT(m) values per modification for the stereoregular fully modified alpha-L-LNA were determined to be +4 degrees C (against DNA) and +5 degrees C (against RNA). 11-Mer alpha-L-LNAs (mix-mer alpha- L-LNA or fully modified alpha- L-LNA) were shown in vitro to be significantly stabilized toward 3'-exonucleolytic degradation. A duplex formed between RNA and either mix-mer alpha-L-LNA or fully modified alpha-L-LNA induced in vitro Escherichia coli RNase H-mediated cleavage, albeit very slow, of the RNA targets at high enzyme concentrations.
Description: Laboratorium voor Medicinale chemie.
ISSN: 0002-7863
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Medicinal Chemistry (Rega Institute)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science