Title: Difference in conformational diversity between nucleic acids with a six-membered 'sugar' unit and natural 'furanose' nucleic acids
Authors: Lescrinier, Eveline ×
Froeyen, Mathy
Herdewijn, Piet #
Issue Date: Jun-2003
Publisher: Oxford univ press
Series Title: Nucleic acids research vol:31 issue:12 pages:2975-89
Abstract: Natural nucleic acids duplexes formed by Watson-Crick base pairing fold into right-handed helices that are classified in two families of secondary structures, i.e. the A- and B-form. For a long time, these A and B allomorphic nucleic acids have been considered as the 'non plus ultra' of double-stranded nucleic acids geometries with the only exception of Z-DNA, a left-handed helix that can be adopted by some DNA sequences. The five-membered furanose ring in the sugar-phosphate backbone of DNA and RNA is the underlying cause of this restriction in conformational diversity. A collection of new Watson-Crick duplexes have joined the 'original' nucleic acid double helixes at the moment the furanose sugar was replaced by different types of six-membered ring systems. The increase in this structural and conformational diversity originates from the rigid chair conformation of a saturated six-membered ring that determines the orientation of the ring substituents with respect to each other. The original A- and B-form oligonucleotide duplexes have expanded into a whole family of new structures with the potential for selective cross-communication in a parallel or antiparallel orientation, opening up a new world for information storage and for molecular recognition-directed self-organization.
ISSN: 0305-1048
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Medicinal Chemistry (Rega Institute)
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
3807.pdf Published 541KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science