Title: The role of anterior cingulate cortex and precuneus in the coordination of motor behaviour
Authors: Wenderoth, Nicole ×
Debaere, Filiep
Sunaert, Stefan
Swinnen, Stephan #
Issue Date: Jul-2005
Publisher: Published on behalf of the European Neuroscience Association by Oxford University Press
Series Title: European Journal of Neuroscience vol:22 issue:1 pages:235-246
Abstract: Behavioral studies in humans have shown that bimanual coordination imposes specific demands on the central nervous system that exceed unimanual task control. In the present study we used functional magnetic resonance imaging to investigate the neural correlate of this additional coordination effort, i.e. regions responding more strongly to bimanual movements than inferred from summing up the responses to the unimanual subtasks. Subjects were scanned while performing movements along different directions, either uni- or bimanually. During the bimanual condition, trajectories of movement of the left and right hand were spatially incompatible, such that additional effort was required to break away from intrinsically favored mirror-movements and to integrate movements of both limbs into a new spatial pattern. Our main finding was that the execution of spatially complex bimanual coordination as compared with the unimanual subtasks activated the anterior cingulate cortex (posterior part) as well as the dorso-anterior precuneus. We hypothesize that the anterior cingulate exerts its modulatory effect on other motor areas, such as the primary motor cortex and the supplementary motor area, in order to suppress intrinsically favored coordination tendencies. Conversely, the precuneus is likely to be involved in shifting attention between different locations in space, which was necessary for monitoring the trajectories of the left and right wrist when both limbs moved in parallel. Our findings suggest that the coordination effort during bimanual and perhaps other modes of coordinated behavior is mediated by regions contributing to higher order functions, which form an interface between cognition and action.
ISSN: 0953-816X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Movement Control & Neuroplasticity Research Group
Translational MRI (+)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science