Title: Adenosine exerts a glycogen-sparing action in contracting rat skeletal muscle
Authors: Vergauwen, L ×
Richter, E A
Hespel, Peter #
Issue Date: May-1997
Series Title: American Journal of Physiology: Endocrinology and Metabolism vol:272 issue:5 Pt 1 pages:E762-E768
Abstract: The role of adenosine in regulating glycogen breakdown during electrically induced muscle contractions was investigated in isolated rat hindquarters perfused with a standard medium either lacking or containing 100 microU/ml insulin and/or 1.67 nM isoprenaline. Nonselective A1/A2-adenosine receptor antagonism via caffeine enhanced (P < 0.05) glycogen breakdown in contracting fast-oxidative (FO) fibers by 40%, provided they were exposed to both insulin and isoprenaline. Combined A1/A2-receptor antagonism by 8-cyclopentyl-1,3-dipropylxanthine (CPDPX) plus 3,7-dimethyl-1-proparglyxanthine (DMPX) fully reproduced (P < 0.05) this stimulatory effect. Furthermore, CPDPX plus DMPX also enhanced (P < 0.05) glycogenolysis during contractions in soleus but not in white gastrocnemius muscle. In contrast, CPDPX or DMPX alone did not affect glycogenolysis in either fiber type. Muscle adenosine 3',5'-cyclic monophosphate concentration during contractions was increased (P < 0.05) by CPDPX plus DMPX in both fiber types, whereas glycogen synthase fractional activity was depressed (P < 0.05). Phosphorylase activity was not changed by CPDPX plus DMPX. It is concluded that adenosine exerts a glycogen-sparing action in oxidative skeletal muscle exposed to both insulin and beta-adrenergic stimulation during contraction, presumably via stimulation of glycogen synthase activity.
ISSN: 0193-1849
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Exercise Physiology Research Group
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science