Title: Evolution of apparent diffusion coefficient, diffusion-weighted, and T2-weighted signal intensity of acute stroke
Authors: Lansberg, M G ×
Thijs, Vincent
O'Brien, M W
Ali, J O
de Crespigny, A J
Tong, D C
Moseley, M E
Albers, G W #
Issue Date: 15-Apr-2001
Series Title: American Journal of Neuroradiology vol:22 issue:4 pages:637-44
Abstract: BACKGROUND AND PURPOSE: Serial study of such MR parameters as diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC), ADC with fluid-attenuated inversion recovery (ADC(FLAIR)), and T2-weighted imaging may provide information on the pathophysiological mechanisms of acute ischemic stroke. Our goals were to establish the natural evolution of MR signal intensity characteristics of acute ischemic lesions and to assess the potential of using specific MR parameters to estimate lesion age. METHODS: Five serial echo-planar DWI studies with and without an inversion recovery pulse were performed in 27 patients with acute stroke. The following lesion characteristics were studied: 1) conventional ADC (ADC(CONV)); 2) ADC(FLAIR); 3) DWI signal intensity (SI(DWI)); 4) T2-weighted signal intensity (SI(T2)), and 5) FLAIR signal intensity (SI(FLAIR)). RESULTS: The lesion ADC(CONV) gradually increased from low values during the first week to pseudonormal during the second week to supranormal thereafter. The lesion ADC(FLAIR) showed the same pattern of evolution but with lower absolute values. A low ADC value indicated, with good sensitivity (88%) and specificity (90%), that a lesion was less than 10 days old. All signal intensities remained high throughout follow-up. SI(DWI) showed no significant change during the first week but decreased thereafter. SI(T2) initially increased, decreased slightly during week 2, and again increased after 14 days. SI(FLAIR) showed the same initial increase as the SI(T2) but remained relatively stable thereafter. CONCLUSION: Our findings further clarify the time course of stroke evolution on MR parameters and indicate that the ADC map may be useful for estimating lesion age. Application of an inversion recovery pulse results in lower, potentially more accurate, absolute ADC values.
ISSN: 0195-6108
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Research Group Experimental Neurology
Laboratory for Neurobiology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science