Title: The effect of edge constraints on the surface normal impedance of a layer of elastic porous material
Authors: Bolton, JS
Desmet, Wim
Shiau, NM #
Issue Date: 30-Nov-1995
Publisher: Acoustical Soc Amer Amer Inst Physics
Series Title: Journal of the Acoustical Society of America vol:98 issue:5 pages:2976
Abstract: Previous work has indicated that the acoustical behavior of partially reticulated noise control foams can be sensitive to small mounting details. It is thus reasonable to expect that the surface normal impedance of a foam sample placed in a standing wave tube will depend on the degree to which the sample is constrained at its edges. Here a two-dimensional version of the Biot theory governing wave propagation in elastic porous materials has been used to investigate the effect of such an edge constraint. First, the allowed modes of propagation within a constrained foam layer were identified. Those modes were then used to predict the response of the constrained layer to an incident plane wave. A comparison of that prediction with the surface normal impedance of an unconstrained half-space of the same material has shown that the principal effect of the edge constraints is to stiffen the sample at frequencies below the cut on of the first shearing mode within the constrained layer. A simple criterion based on the shear stiffness of the elastic porous material has been developed to give the frequency below which the edge-stiffening effect may have a significant effect on a sample's surface normal impedance.
ISSN: 0001-4966
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Production Engineering, Machine Design and Automation (PMA) Section
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.