Title: The tumor suppressor eIF3e mediates calcium-dependent internalization of the L-type calcium channel CaV1.2
Authors: Green, Eric M
Barrett, Curtis F
Bultynck, Geert
Shamah, Steven M
Dolmetsch, Ricardo E # ×
Issue Date: Aug-2007
Series Title: Neuron vol:55 issue:4 pages:615-632
Abstract: Voltage-gated calcium channels (VGCCs) convert electrical activity into calcium (Ca2+) signals that regulate cellular excitability, differentiation, and connectivity. The magnitude and kinetics of Ca2+ signals depend on the number of VGCCs at the plasma membrane, but little is known about the regulation of VGCC surface expression. We report that electrical activity causes internalization of the L-type Ca2+ channel (LTC) CaV1.2 and that this is mediated by binding to the tumor suppressor eIF3e/Int6 (eukaryotic initiation factor 3 subunit e). Using total internal reflection microscopy, we identify a population of CaV1.2 containing endosomes whose rapid trafficking is strongly regulated by Ca2+. We define a domain in the II-III loop of CaV1.2 that binds eIF3e and is essential for the activity dependence of both channel internalization and endosomal trafficking. These findings provide a mechanism for activity-dependent internalization and trafficking of CaV1.2 and provide a tantalizing link between Ca2+ homeostasis and a mammalian oncogene.
ISSN: 0896-6273
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory of Molecular and Cellular Signaling
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
Green et al 2007 Neuron.pdf Published 2164KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science