Title: Stable ciliary activity in human nasal epithelial cells grown in a perfusion system
Authors: Dimova, S ×
Vlaeminck, V
Brewster, M E
Noppe, M
Jorissen, Mark
Augustijns, Patrick #
Issue Date: Mar-2005
Series Title: International journal of pharmaceutics vol:292 issue:1-2 pages:157-68
Abstract: PURPOSE: Explore the usefulness of a perfusion system in order to establish human nasal epithelial cell cultures suitable for long-term in vitro ciliary beat frequency (CBF) and cilio-toxicity studies. METHODS: The cells were obtained by protease digestion of nasal biopsy material. The cells were plated at a density of 0.8-1 x 10(6)/cm2 on Vitrogen-coated polyethylene terephthalate membranes, and cultured under submerged conditions in a CO2 incubator or in a perfusion system (initiated on days 8-9 after plating). The CBF was determined at 24.1 +/- 0.8 degrees C by a computerized microscope photometry system. The morphology of the cultured cells was characterized by transmission electron microscopy (TEM). RESULTS: Under CO2 incubator culture conditions, stable ciliary activity was expressed and maintained from day 2 to day 24. Under perfusion system culture conditions, the CBF (mean+/-S.D., n = 4) amounted to 8.4 +/- 0.9 and 8.8 +/- 0.4 Hz on days 7 and 14, respectively. These values were lower as compared to the corresponding CBF obtained in the CO2 incubator cultures (9.5 +/- 0.6 and 9.9 +/- 1.0 Hz, respectively). Reference cilio-stimulatory (glycocholate) and cilio-inhibitory (chlorocresol) compounds were used to assess CBF reactivity. In the CO2 incubator and 7- and 14-days perfusion system cultures, glycocholate (0.5%) showed a reversible cilio-stimulatory effect of 23, 26 and 21%, respectively, while chlorocresol (0.005%) exerted a reversible cilio-inhibitory effect of 36, 40 and 36%, respectively. TEM revealed polarized cuboidal to columnar epithelial morphology, with well-differentiated ciliated cells under CO2 and perfusion system conditions (up to day 23). CONCLUSION: Culturing human nasal epithelial cells on Vitrogen-coated polyethylene terephthalate membranes in submerged conditions in a CO2 incubator and in a perfusion system offers the possibility for long-term preservation (up to 22-24 days) of stable and reactive CBF in vitro.
ISSN: 0378-5173
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Research Group Experimental Oto-rhino-laryngology
Drug Delivery and Disposition
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
2005-Dimova-Stable ciliary activity in human nasal...-Int J Pharmaceut.pdf Published 336KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science