Title: Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering
Authors: Kolaric, Branko ×
Baert, Kasper
Van der Auweraer, Mark
Vallee, Renaud A. L
Clays, Koen #
Issue Date: Nov-2007
Publisher: American Chemical Society
Series Title: Chemistry of Materials vol:19 issue:23 pages:5547-5552
Abstract: The fluorescence of dye molecules embedded in a photonic crystal is known to be inhibited by the presence of a pseudo-gap acting in their emission range. Here we present the first account of the influence that an incomplete photonic band gap or pseudo-gap has on the fluorescence emission and fluorescence resonant energy transfer. By inserting synthetic, donor (D)-acceptor (A)-labeled oligonucleotide structures in self-organized colloidal photonic crystals, we were able to measure simultaneously the emission spectra and lifetimes of both donor and acceptor. Our results clearly show an inhibition of the donor emission together with an enhancement of the acceptor emission spectra, indicating improved energy transfer from donor to acceptor. These results are mainly attributed to a decrease of the number of available photonic modes for radiative decay of the donor in a photonic crystal in comparison to that of the effective homogeneous medium. The fluorescence decay parameters are also dominated by the pseudo-gap acting on the energy-transfer efficiency.
ISSN: 0897-4756
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular Imaging and Photonics
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science