Title: A rapid phenotypic assay for detection of acyclovir-resistant varicella-zoster virus with mutations in the thymidine kinase open reading frame
Authors: Sahli, R ×
Andrei, Graciela
Estrade, C
Snoeck, Robert
Meylan, P R #
Issue Date: Apr-2000
Series Title: Antimicrobial Agents and Chemotherapy vol:44 issue:4 pages:873-8
Abstract: Susceptibility assays by cell culture methods are time-consuming and are particularly difficult to perform with varicella-zoster virus (VZV). To overcome this limitation, we have adapted a functional test of the viral thymidine kinase (TK) in TK-deficient (tdk mutant) bacteria to detect ACV-resistant VZV in clinical samples. After PCR amplification, the complete viral TK open reading frame (ORF) is purified from PCR primers, digested with two restriction enzymes, and ligated in an oriented fashion into a bacterial expression vector. The ligation products are then used to transform tdk mutant bacteria. After transformation, an aliquot of the bacteria is plated onto a plate with minimal medium containing (i) ampicillin to select for plasmids carrying the viral TK ORF and (ii) isopropyl beta-D-thiogalactopyranoside (IPTG) to induce its expression. An identical aliquot of bacteria is also plated onto a medium containing, in addition to the components described above, 5-fluorodeoxyuridine (FUdR). Compared to the number of transformants on FUdR-free medium, the number of colonies carrying TK derived from susceptible strains was reduced by 86%, on average, in the presence of FUdR. In contrast, the number of transformants carrying TK from resistant strains with a mutant TK were reduced by only 4%, on average, on FUdR-containing plates. We have assessed the validity of this assay with cell culture isolates and several clinical samples including two cerebrospinal fluid samples from which no virus could be isolated. This colony reduction assay allowed the correct identification of the TK phenotype of each VZV isolate tested and can be completed within 3 days of receipt of the sample.
ISSN: 0066-4804
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory of Virology and Chemotherapy (Rega Institute)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science