ITEM METADATA RECORD
Title: Effect of recombinant human interleukin-11 on motilin and substance P release in normal and inflamed rabbits
Authors: Depoortere, Inge ×
Thijs, T
Thielemans, Leen
Keith, JC
Van Assche, Gert
Peeters, TL #
Issue Date: Mar-2001
Publisher: Elsevier science bv
Series Title: Regulatory peptides vol:97 issue:2-3 pages:111-119
Abstract: Recombinant human interleukin-11 (rhIL-11) normalizes depressed smooth muscle tension generation towards motilin and substance P (SP) in rabbits with colitis. The aim of this paper was to evaluate the effect of rhIL-11 treatment on motilin and SP release which could have an effect on the contractility changes. Rabbits received 4, 40, 72 or 720 mug/kg rhIL-11 s.c. or saline, 1 h later a continuous s.c. administration of rhIL-11 was started with or without the induction of colitis (135 mg/kg TNBS) for 5 days. Motilin and SP levels were measured by RIA, motilin mRNA expression by RT-PCR. TNBS-colitis did not affect plasma motilin levels but increased the motilin content of the duodenal mucosa 1.7-fold. rhIL-11 treatment dose-dependently increased plasma motilin levels (720 mug/kg day: 3.5-fold) and the motilin content of the duodenal mucosa (720 mug/kg day: 3.0-fold). The effects of rhIL-11 were similar in normal rabbits and were accompanied by an increased motilin mRNA expression. TNBS-colitis decreased plasma SP levels 2.7-fold and the SP content in the colonic muscle layer 7.1-fold. The decrease in the muscle layer, but not in the plasma, was normalized by rhIL-11 treatment. In normal rabbits, rhIL-11 caused a decrease in plasma SP levels, but had no effect on the tissue content of SP. In conclusion, treatment of inflamed or normal rabbits with rhIL-11 increases plasma and tissue levels of motilin in the duodenal mucosa via an increased expression of motilin in the endocrine cells and induces the release of SP from extrinsic neurons. These changes do not explain the beneficial effect of rhIL-11 on the lowered contractility in inflamed rabbits although a change in balance of neuropeptides may influence gastro-intestinal inflammation. (C) 2001 Elsevier Science B.V. All rights reserved.
URI: 
ISSN: 0167-0115
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Translational Research in GastroIntestinal Disorders
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science