Title: Dynamic modeling of filamentous bulking in lab-scale activated sludge processes
Authors: Smets, Ilse ×
Banadda, Ephraim Noble
Deurinck, Jeroen
Renders, N
Jenne, R
Van Impe, Jan #
Issue Date: Mar-2006
Publisher: Butterworth-Heinemann
Series Title: Journal of Process Control vol:16 issue:3 pages:313-319
Conference: date:Katholieke Univ Leuven, B-3001 Heverlee, Belgium
Abstract: For years now, biological wastewater treatment plants rely on activated sludge systems in which a complex ecosystem, constituted mainly of bacteria and protozoa, (bio)degrade the incoming pollutants. Filamentous bulking, a phenomenon in which the filamentous organisms dominate the activated sludge is still a widespread problem in the operation of activated sludge processes with often severe economic and environmental consequences. linage analysis offers promising perspectives for early detection of filamentous bulking because the morphology parameters of the activated sludge respond rather fast to changing process conditions. This paper aims at exploiting this information in black box models to predict the evolution of the sludge volume index (SVI), a laboratory measurement currently exploited to quantify the sludge settleability. More specifically, dynamic ARX models are investigated as a function of organic loading and digital image analysis information (such as the total filament length per image and some representative mean floe shape parameters). The model's performances are compared on the basis of a squared errors like quality criterion. While the identification results are very promising, the validation of the models on other independently generated data sets, depends on which data set is used for identification. The best performing models have (a combination of) the total filament length, one of the floe elongation parameters and the fractal dimension as inputs. (c) 2005 Elsevier Ltd. All rights reserved.
Description: [**]
ISSN: 0959-1524
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Bio- & Chemical Systems Technology, Reactor Engineering and Safety Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science