Title: Spitzer observations of acetylene bands in carbon-rich asymptotic giant branch stars in the Large Magellanic Cloud
Authors: Matsuura, M ×
Wood, PR
Sloan, G. C
Zijlstra, A. A
van Loon, J. Th
Groenewegen, Martin
Blommaert, Joris
Cioni, M. -R. L
Feast, M. W
Habing, H. J
Hony, Sacha
Lagadec, E
Loup, C
Menzies, J. W
Waters, L. B. F. M
Whitelock, P. A #
Issue Date: 2006
Series Title: Monthly notices of the Royal Astronomical Society vol:371 issue:1 pages:415-420
Abstract: We investigate the molecular bands in carbon-rich asymptotic giant branch (AGB) stars in the Large Magellanic Cloud (LMC), using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope (SST) over the 5-38 mu m range. All 26 low-resolution spectra show acetylene (C2H2) bands at 7 and 14 mu m. The hydrogen cyanide (HCN) bands at these wavelengths are very weak or absent. This is consistent with low nitrogen abundances in the LMC. The observed 14 mu m C2H2 band is reasonably reproduced by an excitation temperature of 500 K. There is no clear dilution of the 14 mu m C2H2 band by circumstellar dust emission. This 14-mu m band originates from molecular gas in the circumstellar envelope in these high mass-loss rate stars, in agreement with previous findings for Galactic stars. The C2H2 column density, derived from the 13.7 mu m band, shows a gas mass-loss rate in the range 3 x 10(-6) to 5 x 10(-5) M-circle dot yr(-1). This is comparable with the total mass-loss rate of these stars estimated from the spectral energy distribution. Additionally, we compare the line strengths of the 13.7 mu m C2H2 band of our LMC sample with those of a Galactic sample. Despite the low metallicity of the LMC, there is no clear difference in the C2H2 abundance among LMC and Galactic stars. This reflects the effect of the third dredge-up bringing self-produced carbon to the surface, leading to high carbon-to-oxygen ratio at low metallicity.
ISSN: 0035-8711
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Institute of Astronomy
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science