Title: Two-dimensional modeling of wave propagation in materials with hysteretic nonlinearity
Authors: Vanaverbeke, Sigfried ×
Van Den Abeele, Koen #
Issue Date: Jul-2007
Publisher: Acoustical soc amer amer inst physics
Series Title: The Journal of the Acoustical Society of America vol:122 issue:1 pages:58-72
Abstract: A multiscale model for the two-dimensional nonlinear wave propagation in a locally microdamaged medium is presented, and numerical simulations are analyzed in view of nondestructive testing applications. The multiscale model uses a statistical distribution of hysterons and upscales their microscopic stress-strain relations to a mesoscopic level. Macroscopic observations are then predicted by finite integration techniques. The influence of a small region with hysteretic nonlinearity on the generation of harmonics is investigated, and numerical results for different amplitudes of the input signal and different analysis techniques of the response signal are presented. Second, a study is conducted on the interaction of a Rayleigh wave with a microdamaged zone with hysteretic nonlinearity at the surface of an otherwise linear body, and the influence of the microdamaged zone on the surface wave velocity and on the generation of harmonics is examined. It is found that the effect of hysteresis on the Rayleigh wave propagation can be barely seen in the surface wave velocity measurement, but shows up nicely in the wave spectrum. The potential of a nonlinearity based depth profiling technique is explored by evaluating the nonlinear responses at different frequencies for a vertically stratified medium with spatially varying hysteresis properties. (c) 2007 Acoustical Society of America.
ISSN: 0001-4966
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Physics, Campus Kulak Kortrijk
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science