Title: Inhibition of the von Willebrand (VWF)-collagen interaction by an antihuman VWF monoclonal antibody results in abolition of in vivo arterial platelet thrombus formation in baboons
Authors: Wu, Dongmei ×
Vanhoorelbeke, Karen
Cauwenberghs, Nancy
Meiring, Muriel
Depraetere, Hilde
Kotze, Harry F
Deckmyn, Hans #
Issue Date: 15-Apr-2002
Series Title: Blood vol:99 issue:10 pages:3623-8
Abstract: The interaction between collagen, von Willebrand factor (VWF), and glycoprotein Ib is the first step in hemostasis and thrombosis especially under high shear conditions. We studied the inhibition of the VWF-collagen interaction by using an antihuman VWF monoclonal antibody 82D6A3 to prevent arterial thrombosis in baboons to develop a new kind of antithrombotic strategy and determine for the first time experimental in vivo data concerning the importance of the collagen-VWF interaction. We used a modified Folts model to study the antithrombotic efficacy of 82D6A3, where cyclic flow reductions (CFRs) were measured in the femoral artery. Administering a dose of 100, 300, and 600 microg/kg resulted in a 58.3%, 100%, and 100% reduction in the CFRs, respectively. When 100 microg/kg 82D6A3 was infused into the baboons, 80% of VWF-A3 domain was occupied, corresponding to 30% to 36% ex vivo inhibition of VWF binding to collagen, with no prolongation of the bleeding time. The bleeding time was also not significantly prolonged when the CFRs were abolished at doses of 300 microg/kg and 600 microg/kg. At these doses 100% of VWF was occupied by the antibody and 100% ex vivo inhibition of the VWF-collagen binding was observed. 82D6A3 has a high affinity for VWF; after 48 hours still 68% VWF (300 microg/kg) was occupied with a pharmacologic effect up to 5 hours after administration (80%-100% occupancy). In conclusion, these results clearly indicate that the VWF-collagen interaction is important in vivo in thrombosis under high shear conditions and thus might be a new target for preventing arterial thrombosis.
ISSN: 0006-4971
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Chemistry, Campus Kulak Kortrijk
Interdisciplinary Research Facility Life Sciences, Campus Kulak Kortrijk
× corresponding author
# (joint) last author

Files in This Item:
File Status SizeFormat
82D6A3bavianen.pdf Published 74KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science