Title: Kinetic and equilibrium intermediate states are different in LYLA1, a chimera of lysozyme and alpha-lactalbumin
Authors: Haezebrouck, P ×
Noyelle, Katrien
Joniau, Marcel
Van Dael, Herman #
Issue Date: 29-Sep-1999
Series Title: Journal of Molecular Biology vol:293 issue:3 pages:703-18
Abstract: For several proteins, a striking resemblance has been observed between the equilibrium partially folded state and the kinetic burst-phase intermediate, observed just after the dead-time in refolding experiments. This has led to the general statement that the conformation of both types of intermediates is similar. We show, at least for one of the proteins investigated here, that, although both states have some common characteristics, they are not identical. LYLA1 is a chimeric protein resulting from the transplantation of the Ca(2+)-binding loop and the adjacent helix C of bovine alpha-lactalbumin into the homologous position (residues 76-102) in human lysozyme. The apo-form of LYLA1 unfolds through a partially folded state, in analogy with the folding behaviour of the structurally homologous alpha-lactalbumin. The folding kinetics of LYLA1 and of its wild-type homologue, human lysozyme, are investigated by means of stopped-flow fluorescence and CD spectroscopy. In the case of human lysozyme, refolding involves parallel pathways as indicated by experiments in the presence of a fluorescent inhibitor. For apo-LYLA1, the burst-phase intermediate is compared with the equilibrium intermediate. At neutral pH, both states correspond, in that an important amount of secondary structure has been established, but the burst-phase intermediate is shown to be significantly less stable than the equilibrium intermediate. At pH 1.85, in the presence of 1.5 M guanidinium hydrochloride (GdnHCl) and at 25 degrees C, the equilibrium partially folded state of LYLA1 is 100% populated. When LYLA1 is rapidly diluted from 6 M GdnHCl to 1.5 M under these conditions, a time-dependent evolution of the fluorescence signal is observed, reflecting the transition from a burst-phase to a different equilibrium intermediate. These results provide strong evidence for the non-identity of both states in this protein.
ISSN: 0022-2836
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Faculty of Science, Campus Kulak Kortrijk
Faculty of Medicine, Campus Kulak Kortrijk
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science