This item still needs to be validated !
Title: Receptor-mediated biological responses are prolonged using hydrophobized ligands
Authors: De Cuyper, Marcel ×
Lievens, Sylvia
Flo, Gerda
Cokelaere, Marnix
Peleman, Christa
Martins, Fernanda
Santana, Maria Helena Andrade #
Issue Date: 15-Nov-2004
Series Title: Biosensors & bioelectronics vol:20 issue:6 pages:1157-64
Abstract: Hormone-receptor interactions occur following three-dimensional diffusion of the ligand to the membrane-embedded receptor. However, prior hydrophobization of the ligand might restrict its movement to two dimensions along the membrane surface, and the biological response might therefore be modulated. This idea was tested using the C-terminal nonapeptide, CCK9, of the satiating hormone, cholecystokinin (CCK). The hormone was lipidated by linking it covalently to distearoylphosphatidylethanolamine via a poly(ethylene glycol) (PEG) spacer. The desired conjugate was isolated by thin-layer chromatography and incorporated into preformed small unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles. The hormone-bearing vesicles were injected intraperitoneally into Wistar rats and food intake monitored. Compared to the biological effect elicited by the same amount of soluble non-derivatized CCK9, food intake reduction showed a delayed onset, but lasted for a significantly longer time. We believe this prolonged effect was due to the transfer of the derivatized CCK9 from the vesicles to the natural membrane containing the hormone receptor. Ultimately, this event may result in sustained receptor occupation and, thus, food intake reduction. The underlying mechanism for the physiological effects observed may be of relevance in interpreting results obtained using artificial measuring devices; for example, the signal produced by biosensors may be drastically affected by the hydrophobicity of the ligand.
ISSN: 0956-5663
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Interdisciplinary Research Facility Life Sciences, Campus Kulak Kortrijk
Faculty of Medicine, Campus Kulak Kortrijk
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science