Title: Stability domains of actin genes and genomic evolution
Authors: Carlon, Enrico ×
Dkhissi, Ahmed
Lejard Malki, Mehdi
Blossey, Ralf #
Issue Date: 21-Nov-2007
Publisher: Published by the American Physical Society through the American Institute of Physics
Series Title: Physical review. E, Statistical, nonlinear, and soft matter physics vol:76 pages:1-9
Article number: 051916
Abstract: In eukaryotic genes, the protein coding sequence is split into several fragments, the exons, separated by noncoding DNA stretches, the introns. Prokaryotes do not have introns in their genomes. We report calculations of the stability domains of actin genes for various organisms in the animal, plant, and fungi kingdoms. Actin genes have been chosen because they have been highly conserved during evolution. In these genes, all introns were removed so as to mimic ancient genes at the time of the early eukaryotic development, i.e., before intron insertion. Common stability boundaries are found in evolutionarily distant organisms, which implies that these boundaries date from the early origin of eukaryotes. In general, the boundaries correspond with intron positions in the actins of vertebrates and other animals, but not much for plants and fungi. The sharpest boundary is found in a locus where fungi, algae, and animals have introns in positions separated by one nucleotide only, which identifies a hot spot for insertion. These results suggest that some introns may have been incorporated into the genomes through a thermodynamically driven mechanism, in agreement with previous observations on human genes. They also suggest a different mechanism for intron insertion in plants and animals.
ISSN: 1539-3755
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Theoretical Physics Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science