Title: Evidence against 'ultrahard' thermal turbulence at very high Rayleigh numbers
Authors: Glazier, JA ×
Segawa, T
Naert, Antoon
Sano, M #
Issue Date: Mar-1999
Publisher: Macmillan magazines ltd
Series Title: Nature vol:398 issue:6725 pages:307-310
Abstract: Several theories(1-5) predict that a limiting and universal turbulent regime-'ultrahard' turbulence-should occur at large Rayleigh numbers (Ra, the ratio between thermal driving and viscous dissipative forces) in Rayleigh-BC nard thermal convection in a dosed, rigid-walled cell. In this regime, viscosity becomes negligible, gravitationally driven buoyant plumes transport the heat and the thermal boundary layer, where the temperature profile is linear, controls the rate of thermal transport. The ultrahard state is predicted to support more efficient thermal transport than 'hard' (fully developed) turbulence: transport efficiency in the ultrahard state grows as Ra-1/2, as opposed to Ra-2/7 in the hard state(6). The detection of a transition to the ultrahard state has been claimed in recent experiments using mercury(7) and gaseous helium(8). Here we report experiments on Rayleigh-Benard convection in mercury at high effective Rayleigh numbers, in,which we see no evidence of a transition to an ultrahard state. Our results suggest that the Limiting state of thermal turbulence at high Rayleigh numbers is ordinary hard turbulence.
ISSN: 0028-0836
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Archaeology, Leuven
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science