Title: Specific proteolysis of human plasminogen by a 24 kDa endopeptidase from a novel Chryseobacterium Sp
Authors: Lijnen, Roger ×
Van Hoef, B
Ugwu, F
Collen, Desire
Roelants, I #
Issue Date: Jan-2000
Series Title: Biochemistry vol:39 issue:2 pages:479-488
Abstract: A novel single polypeptide endopeptidase of 24 kDa (24k-endopeptidase) was purified with a yield of 300-400 microg/L from conditioned medium of a bacterial strain which was identified as a new species in the genus Chryseobacterium Sp. on the basis of its 16S rDNA sequence and DNA:DNA hybridizations. The NH(2)-terminal amino acid sequence (Val-Ala-Thr-Pro-Asn-Leu-Glu-.) was not found in the availabe databases. The 24k-endopeptidase specifically hydrolyzed the Ser(441)-Val(442) peptide bond in human plasmin(ogen), with additional cleavage of the Lys(78)-Val(79) and Pro(447)-Val(448) peptide bonds, and a secondary cleavage at Lys(615)-Val(616). Thereby, plasminogen is converted into an angiostatin-like fragment containing kringles 1-4 (K1-4) and miniplasminogen (kringle 5 and the serine proteinase domain). The purified K1-4 fragment showed a comparable cytotoxicity toward endothelial cells as the elastase-derived K1-3 fragment (12.7% versus 10.6% at a concentration of 10 microg/mL). Plasminogen, bound to monocytoid THP-1 cells, was also cleaved by the 24k-endopeptidase, resulting in generation of an angiostatin-like fragment and in a decreased capacity to generate cell-associated plasmin following activation by urokinase. The 24k-endopeptidase was not efficiently neutralized by specific inhibitors against the serine, cysteine, aspartic, or matrix metalloproteinase classes of enzymes. In human plasma or serum, however, it induced only very limited plasminogen degradation, apparently due to neutralization of its activity by alpha(2)-macroglobulin. Interaction of this novel 24k-endopeptidase with plasminogen thus yields an angiostatin-like fragment and affects plasmin-mediated cellular proteolytic activity.
ISSN: 0006-2960
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular and Vascular Biology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science