Title: Evolution of oxygen and glucose concentration profiles in a tissue-mimetic culture system of embryonic stem cells
Authors: Cochran, David M ×
Fukumura, Dai
Ancukiewicz, Marek
Carmeliet, Peter
Jain, Rakesh K #
Issue Date: Aug-2006
Series Title: Annals of biomedical engineering vol:34 issue:8 pages:1247-58
Abstract: A tissue-mimetic culture system (TMCS) in which cells are sandwiched between two glass slides provides an ideal microenvironment for studying the effects of oxygen and nutrient gradients on cells in culture. A mathematical model was utilized to predict the time course of the development of oxygen and glucose concentration gradients within the TMCS. Oxygen and glucose consumption rates of mouse embryonic stem cells were measured as parameters for the model. The model predicts oxygen and glucose concentration profiles directly using a single experimentally controlled variable, the seeding density of cells within the system. The model predicts that the time required for the gradients to reach steady state is inversely related to the cell density, and the penetration depth of the gradients into the TMCS is inversely related to the square root of the cell density. Experimental oxygen concentration measurements were performed at a cell density of 9.1 x 10(6) cells cm(-3), and the gradient was found to develop to a steady-state profile within 20 min and penetrate approximately 2 mm into the TMCS, consistent with the theoretical predictions. This model and the TMCS provide useful tools for investigating the effect of the metabolic microenvironment on cells in culture.
ISSN: 0090-6964
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular and Vascular Biology
Laboratory of Angiogenesis and Vascular Metabolism (VIB-KU Leuven Centre for Cancer Biology) (+)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science