Title: A comparison of approaches for learning probability trees
Authors: Fierens, Daan ×
Ramon, Jan
Blockeel, Hendrik
Bruynooghe, Maurice #
Issue Date: 2005
Publisher: Springer
Series Title: Lecture Notes in Computer Science vol:3720 pages:556-563
Conference: European Conference on Machine Learning edition:16 location:Porto, Portugal date:October 3-7, 2005
Abstract: Probability trees (or Probability Estimation Trees, PET's) are decision trees with probability distributions in the leaves. Several alternative approaches for learning probability trees have been proposed but no thorough comparison of these approaches exists.
In this paper we experimentally compare the main approaches using the relational decision tree learner Tilde (both on non-relational and on relational datasets). Next to the main existing approaches, we also consider a novel variant of an existing approach based on the Bayesian Information Criterion (BIC). Our main conclusion is that overall trees built using the C4.5-approach or the C4.4-approach (C4.5 without post-pruning) have the best predictive performance. If the number of classes is low, however, BIC performs equally well. An additional advantage of BIC is that its trees are considerably smaller than trees for the C4.5- or C4.4-approach.
Description: Acceptance rate = 20%
ISSN: 0302-9743
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Informatics Section
× corresponding author
# (joint) last author

Files in This Item:
File Status SizeFormat
ecml05_new.pdf Published 254KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science