ITEM METADATA RECORD
Title: A Newton-Picard shooting method for computing periodic-solutions of large-scale dynamical-systems
Authors: Roose, Dirk ×
Lust, Kurt
Champneys, A
Spence, A #
Issue Date: Oct-1995
Publisher: Pergamon-elsevier science ltd
Series Title: Chaos solitons & fractals vol:5 issue:10 pages:1913-1925
Abstract: A numerical method is presented for the efficient computation and continuation of periodic solutions of large systems of ordinary differential equations. The method is particularly useful when a shooting approach based on full Newton or quasi-Newton iteration is prohibitively expensive. Both stable and unstable solutions can be computed. The basic idea is to split the eigenspace of the monodromy matrix around the periodic orbit into two orthogonal components which contain, respectively, all eigenvalues with norm less than or greater than some threshold value less than unity. In the former 'stable' subspace one performs time integration, which is equivalent to a Picard iteration; in the much smaller, 'unstable' subspace a Newton step is carried out. A strategy for computing the stable and unstable subspaces without forming the full monodromy matrix is briefly discussed. Numerical results are presented for the one-dimensional Brusselator model. The Newton-Picard method with an appropriately chosen threshold value proves to be accurate and much more efficient than shooting based on full Newton iteration.
URI: 
ISSN: 0960-0779
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Numerical Analysis and Applied Mathematics Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science