This item still needs to be validated !
Title: Inhibitory effect of piracetam on platelet-rich thrombus formation in an animal model
Authors: Stockmans, Filip ×
Deberdt, W
Nyström, A
Nyström, E
Stassen, J M
Vermylen, Jozef
Deckmyn, Hans #
Issue Date: Mar-1998
Series Title: Thrombosis and haemostasis vol:79 issue:1 pages:222-7
Abstract: Intravenous administration of piracetam to hamsters reduced the formation of a platelet-rich venous thrombus induced by a standardised crush injury, in a dose-dependent fashion with an IC50 of 68 +/- 8 mg/kg. 200 mg/kg piracetam also significantly reduced in vivo thrombus formation in rats. However, in vitro aggregation of rat platelets was only inhibited with piracetam-concentrations at least 10-fold higher than plasma concentrations (6.2 +/- 1.1 mM) obtained in the treated animals. No effects were seen on clotting tests. In vitro human platelet aggregation, induced by a variety of agonists, was inhibited by piracetam, with IC50's of 25-60 mM. The broad inhibition spectrum could be explained by the capacity of piracetam to prevent fibrinogen binding to activated human platelets. Ex vivo aggregations and bleeding times were only minimally affected after administration of 400 mg/kg piracetam i.v. to healthy male volunteers, resulting in peak plasma levels of 5.8 +/- 0.3 mM. A possible antiplatelet effect of piracetam could be due to the documented beneficial effect on red blood cell deformability leading to a putative reduction of ADP release by damaged erythrocytes. However similarly high concentrations were needed to prevent stirring-induced "spontaneous" platelet aggregation in human whole blood. It is concluded that the observed antithrombotic action of piracetam cannot satisfactorily be explained by an isolated direct effect on platelets. An additional influence of piracetam on the rheology of the circulating blood and/or on the vessel wall itself must therefore be taken into consideration.
ISSN: 0340-6245
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular and Vascular Biology
Chemistry, Campus Kulak Kortrijk
Interdisciplinary Research Facility Life Sciences, Campus Kulak Kortrijk
Faculty of Medicine - miscellaneous
Development and Regeneration, Campus Kulak Kortrijk
Department of Development and Regeneration - miscellaneous (+)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science