Title: Resistance of human immunodeficiency virus type 1 to the high-mannose binding agents cyanovirin N and concanavalin A
Authors: Witvrouw, Myriam ×
Fikkert, Valery
Hantson, Anke
Pannecouque, Christophe
O'Keefe, Barry R
McMahon, James
Stamatatos, Leonidas
De Clercq, Erik
Bolmstedt, Anders #
Issue Date: Jun-2005
Series Title: Journal of Virology vol:79 issue:12 pages:7777-7784
Abstract: Due to the biological significance of the carbohydrate component of the human immunodeficiency virus type 1 (HIV-1) glycoproteins in viral pathogenesis, the glycosylation step constitutes an attractive target for anti-HIV therapy. Cyanovirin N (CV-N), which specifically targets the high-mannose (HM) glycans on gp120, has been identified as a potent HIV-1 entry inhibitor. Concanavalin A (ConA) represents another mannose-binding lectin, although it has a lower specificity for HM glycans than that of CV-N. For the present study, we selected CV-N- and ConA-resistant HIV-1 strains in the presence of CV-N and ConA, respectively. Both resistant strains exhibited a variety of mutations eliminating N-linked glycans within gp120. Strains resistant to CV-N or ConA displayed high levels of cross-resistance towards one another. The N-glycan at position 302 was eliminated in both of the lectin-resistant strains. However, the elimination of this glycan alone by site-directed mutagenesis was not sufficient to render HIV-1 resistant to CV-N or ConA, suggesting that HIV-1 needs to mutate several N-glycans to become resistant to these lectins. Both strains also demonstrated clear cross-resistance towards the carbohydrate-dependent monoclonal antibody 2G12. In contrast, the selected strains did not show a reduced susceptibility towards the nonlectin entry inhibitors AMD3100 and enfuvirtide or towards reverse transcriptase or protease inhibitors. Recombination of the mutated gp160 genes of the strains resistant to CV-N or ConA into a wild-type background fully reproduced the (cross-)resistance profiles of the originally selected strains, pointing to the impact of the N-glycan mutations on the phenotypic resistance profiles of both selected strains.
ISSN: 0022-538X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory of Virology and Chemotherapy (Rega Institute)
Molecular Virology and Gene Therapy
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science