This item still needs to be validated !
Title: Novel thrombolytic agents
Authors: Verstraete, Marc ×
Lijnen, Roger #
Issue Date: 1994
Series Title: Cardiovascular drugs and therapy / sponsored by the International Society of Cardiovascular Pharmacotherapy vol:8 issue:6 pages:801-11
Abstract: The fibrinolytic system comprises an inactive proenzyme, plasminogen, that is converted by plasminogen activators to the active enzyme, plasmin, that degrades fibrin. Two immunologically distinct plasminogen activators have been identified: tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA). Plasminogen activation is regulated by specific molecular interactions between its main components, as well as by controlled synthesis and release of plasminogen activator inhibitors, primarily from endothelial cells. The observed association between abnormal fibrinolysis and a tendency toward bleeding or thrombosis demonstrates the (patho)physiological importance of the fibrinolytic system. Transgenic animals are a suitable experimental model to examine the in vivo impact of fibrinolytic components in thrombosis and thrombolysis. Inactivation, by homologous recombination, of the tissue-type plasminogen activator genes in mice impairs thrombolysis in a significant manner whereas inactivation of the plasminogen activator-1 gene enhances the rate of spontaneous lysis. Despite their widespread use all currently available thrombolytic agents suffer from a number of significant limitations, including resistance to reperfusion, the occurrence of acute coronary reocclusion and bleeding complications. Therefore, the quest for thrombolytic agents with a higher thrombolytic potency, specific thrombolytic activity and/or a better fibrin-selectivity continues. Several lines of research toward improvement of thrombolytic agents are being explored, including the construction of mutants and variants of plasminogen activators, chimeric plasminogen activators, conjugates of plasminogen activators with monoclonal antibodies, or plasminogen activators from animal or bacterial origin.
ISSN: 0920-3206
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Faculty of Medicine - miscellaneous
Molecular and Vascular Biology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science