Title: Smad3-dependent induction of plasminogen activator inhibitor-1 in astrocytes mediates neuroprotective activity of transforming growth factor-beta 1 against NMDA-induced necrosis
Authors: Docagne, Fabian ×
Nicole, Olivier
Gabriel, Cecilia
Fernández-Monreal, Mónica
Lesné, Sylvain
Ali, Carine
Plawinski, Laurent
Carmeliet, Peter
MacKenzie, Eric T
Buisson, Alain
Vivien, Denis #
Issue Date: Dec-2002
Series Title: Molecular and cellular neurosciences vol:21 issue:4 pages:634-44
Abstract: The intravenous injection of the serine protease, tissue-type plasminogen activator (t-PA), has shown to benefit stroke patients by promoting early reperfusion. However, it has recently been suggested that t-PA activity, in the cerebral parenchyma, may also potentiate excitotoxic neuronal death. The present study has dealt with the role of the t-PA inhibitor, PAI-1, in the neuroprotective activity of the cytokine TGF-beta1 and focused on the transduction pathway involved in this effect. We demonstrated that PAI-1, produced by astrocytes, mediates the neuroprotective activity of TGF-beta 1 against N-methyl-D-aspartate (NMDA) receptor-mediated excitotoxicity. This t-PA inhibitor, PAI-1, protected neurons against NMDA-induced neuronal death by modulating the NMDA-evoked calcium influx. Finally, we showed that the activation of the Smad3-dependent transduction pathway mediates the TGF-beta-induced up-regulation of PAI-1 and subsequent neuroprotection. Overall, this study underlines the critical role of the t-PA/PAI-1 axis in the regulation of glutamatergic neurotransmission.
ISSN: 1044-7431
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular and Vascular Biology
Laboratory of Angiogenesis and Vascular Metabolism (VIB-KU Leuven Centre for Cancer Biology) (+)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science