Title: Plasma ectonucleotidases prevent desensitization of purinergic receptors in stored platelets: importance for platelet activity during thrombus formation
Authors: Cauwenberghs, Sandra
Feijge, Marion A H
Hageman, Geja
Hoylaerts, Marc
Akkerman, Jan-Willem N
Curvers, Joyce
Heemskerk, Johan W M # ×
Issue Date: Jun-2006
Series Title: Transfusion vol:46 issue:6 pages:1018-1028
Abstract: BACKGROUND: Platelets (PLTs) contain purinergic receptors for ATP (P2X1) and ADP (P2Y1 and P2Y12) that rapidly desensitize upon stimulation with these nucleotides. In vivo, this is antagonized by ectonucleotidases on the surface of endothelial cells and white blood cells (WBCs). The receptor desensitization of ATP- and ADP-induced responses of PLTs stored in plasma without WBCs was investigated. STUDY DESIGN AND METHODS: ATP- and ADP-induced PLT shape change (shear-induced) aggregation and Ca2+ signaling were measured in the presence or absence of plasma. Degradation of nucleotides in plasma was quantified by high-performance liquid chromatography. RESULTS: Washed PLTs became refractory for ATP and ADP in shape change, aggregation, and Ca2+ responses during a 90-minute incubation at 37 degrees C. The PLT responses mediated by P2X1, P2Y1, and P2Y12 receptors gradually reduced or disappeared. When plasma was present, however, the PLTs persistently showed high responses to ATP and ADP. Heat treatment of plasma abolished this effect. Also under conditions of flow and high shear, PLTs in plasma kept high P2X1 activity, mediating aggregate formation. In isolated plasma, not containing WBCs, nucleotides were degraded in the order of ADP/UDP>ATP/UTP. Degradation of ATP was partly inhibited by blocking the ecto-NTPDase CD39, whereas degradation of both ATP and ADP was inhibited by blocking ectopyrophosphatase/phosphodiesterase activity. Part of the nucleotide-degrading activities appeared to be membrane-bound. CONCLUSION: Ectonucleotidases in plasma preserve the functionality of P2X1 and P2Y receptors. Upon PLT storage, these plasma activities are essential to ensure adequate (shear-dependent) formation of aggregates and thrombi.
ISSN: 0041-1132
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular and Vascular Biology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science